Abstract
The anti-hen egg lysozyme monoclonal antibody HyHEL-5 and its complexes with various species-variant and mutant lysozymes have been the subject of considerable experimental and theoretical investigation. The affinity of HyHEL-5 for bobwhite quail lysozyme (BWQL) is over 1000-fold lower than its affinity for the original antigen, hen egg lysozyme (HEL). This difference is believed to arise almost entirely from the replacement in BWQL of the structural and energetic epitope residue Arg68 by lysine. In this study, the association and dissociation kinetics of BWQL with HyHEL-5 were investigated under a variety of conditions and compared with previous results for HEL. HyHEL-5-BWQL association follows a bimolecular mechanism and the dissociation of the antibody-antigen complex is a first-order process. Changes in ionic strength (from 27 to 500 mM) and pH (from 6.0 to 10.0) produced about a 2-fold change in the association and dissociation rates. The effect of viscosity modifiers on the association reaction was also studied. The large difference in the HEL and BWQL affinities for HyHEL-5 is essentially due to differences in the dissociation rate constant.
Original language | English (US) |
---|---|
Pages (from-to) | 79-83 |
Number of pages | 5 |
Journal | Protein Engineering |
Volume | 12 |
Issue number | 1 |
DOIs | |
State | Published - 1999 |
Keywords
- Antibody
- Fluorescence polarization spectroscopy
- Lysozyme
- Stopped-flow kinetics
ASJC Scopus subject areas
- Molecular Biology
- Biochemistry