TY - JOUR
T1 - Genistein prevents development of spontaneous ovarian cancer and inhibits tumor growth in hen model
AU - Sahin, Kazim
AU - Yenice, Engin
AU - Bilir, Birdal
AU - Orhan, Cemal
AU - Tuzcu, Mehmet
AU - Sahin, Nurhan
AU - Ozercan, Ibrahim H.
AU - Kabil, Nashwa
AU - Ozpolat, Bulent
AU - Kucuk, Omer
N1 - Publisher Copyright:
© 2019 American Association for Cancer Research.
PY - 2019/3
Y1 - 2019/3
N2 - Genistein, the major isoflavone in soybean, has been reported to exert anticancer effects on various types of cancer including ovarian cancer; however, its chemopreventive effects and mechanisms of action in ovarian cancer have not been fully elucidated in spontaneously developing ovarian cancer models. In this study, we demonstrated the preventive effects and mechanisms of genistein in the laying hen model that develops spontaneous ovarian cancer at high incidence rates. Laying hens were randomized to three groups: control (3.01 mg/hen, n = 100), low (52.48 mg/hen n = 100), and high genistein supplementation (106.26 mg/hen/day; per group). At the end of 78 weeks, hens were euthanized and ovarian tumors were collected and analyzed. We observed that genistein supplementation significantly reduced the ovarian tumor incidence (P = 0.002), as well as the number and size of the tumors (P = 0.0001). Molecular analysis of the ovarian tumors revealed that genistein downregulated serum malondialdehyde, a marker for oxidative stress and the expression of NFkB and Bcl-2, whereas it upregulated Nrf2, HO-1, and Bax expression at protein level in ovarian tissues. Moreover, genistein intake decreased the activity of mTOR pathway as evidenced by reduced phosphorylation of mTOR, p70S6K1, and 4E-BP1. Taken together, our findings strongly support the potential of genistein in the chemoprevention of ovarian cancer and highlight the effects of the genistein on the molecular pathways involved in ovarian tumorigenesis.
AB - Genistein, the major isoflavone in soybean, has been reported to exert anticancer effects on various types of cancer including ovarian cancer; however, its chemopreventive effects and mechanisms of action in ovarian cancer have not been fully elucidated in spontaneously developing ovarian cancer models. In this study, we demonstrated the preventive effects and mechanisms of genistein in the laying hen model that develops spontaneous ovarian cancer at high incidence rates. Laying hens were randomized to three groups: control (3.01 mg/hen, n = 100), low (52.48 mg/hen n = 100), and high genistein supplementation (106.26 mg/hen/day; per group). At the end of 78 weeks, hens were euthanized and ovarian tumors were collected and analyzed. We observed that genistein supplementation significantly reduced the ovarian tumor incidence (P = 0.002), as well as the number and size of the tumors (P = 0.0001). Molecular analysis of the ovarian tumors revealed that genistein downregulated serum malondialdehyde, a marker for oxidative stress and the expression of NFkB and Bcl-2, whereas it upregulated Nrf2, HO-1, and Bax expression at protein level in ovarian tissues. Moreover, genistein intake decreased the activity of mTOR pathway as evidenced by reduced phosphorylation of mTOR, p70S6K1, and 4E-BP1. Taken together, our findings strongly support the potential of genistein in the chemoprevention of ovarian cancer and highlight the effects of the genistein on the molecular pathways involved in ovarian tumorigenesis.
UR - http://www.scopus.com/inward/record.url?scp=85062422106&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062422106&partnerID=8YFLogxK
U2 - 10.1158/1940-6207.CAPR-17-0289
DO - 10.1158/1940-6207.CAPR-17-0289
M3 - Article
C2 - 30651293
AN - SCOPUS:85062422106
SN - 1940-6207
VL - 12
SP - 135
EP - 145
JO - Cancer Prevention Research
JF - Cancer Prevention Research
IS - 3
ER -