TY - JOUR
T1 - Hepatocellular Carcinoma–Circulating Tumor Cells Expressing PD-L1 Are Prognostic and Potentially Associated With Response to Checkpoint Inhibitors
AU - Winograd, Paul
AU - Hou, Shuang
AU - Court, Colin M.
AU - Lee, Yi Te
AU - Chen, Pin Jung
AU - Zhu, Yazhen
AU - Sadeghi, Saeed
AU - Finn, Richard S.
AU - Teng, Pai Chi
AU - Wang, Jasmin J.
AU - Zhang, Zhicheng
AU - Liu, Hongtao
AU - Busuttil, Ronald W.
AU - Tomlinson, James S.
AU - Tseng, Hsian Rong
AU - Agopian, Vatche G.
N1 - Publisher Copyright:
© 2020 The Authors. Hepatology Communications published by Wiley Periodicals LLC on behalf of the American Association for the Study of Liver Diseases.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Hepatocellular carcinoma (HCC) is a leading cause of mortality. Checkpoint inhibitors of programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1) have shown great efficacy, but lack biomarkers that predict response. Circulating tumor cells (CTCs) have promise as a liquid-biopsy biomarker; however, data on HCC CTCs expressing PD-L1 have not been reported. We sought to detect PD-L1-expressing HCC-CTCs and investigated their role as a prognostic and predictive biomarker. Using an antibody-based platform, CTCs were enumerated/phenotyped from a prospective cohort of 87 patients with HCC (49 early-stage, 22 locally advanced, and 16 metastatic), 7 patients with cirrhosis, and 8 healthy controls. Immunocytochemistry identified total HCC CTCs (4′,6-diamidino-2-phenylindole–positive [DAPI+]/cytokeratin-positive [CK+]/clusters of differentiation 45–negative [CD45−]) and a subpopulation expressing PD-L1 (DAPI+/CK+/PD-L1+/CD45−). PD-L1+ CTCs were identified in 4 of 49 (8.2%) early-stage patients, but 12 of 22 (54.5%) locally advanced and 15 of 16 (93.8%) metastatic patients, accurately discriminating early from locally advanced/metastatic HCC (sensitivity = 71.1%, specificity = 91.8%, area under the receiver operating characteristic curve = 0.807; P < 0.001). Compared to patients without PD-L1+ CTCs, patients with PD-L1+ CTCs had significantly inferior overall survival (OS) (median OS = 14.0 months vs. not reached, hazard ratio [HR] = 4.0, P = 0.001). PD-L1+ CTCs remained an independent predictor of OS (HR = 3.22, P = 0.010) even after controlling for Model for End-Stage Liver Disease score (HR = 1.14, P < 0.001), alpha-fetoprotein (HR = 1.55, P < 0.001), and overall stage/tumor burden (beyond University of California, San Francisco, HR = 7.19, P < 0.001). In the subset of 10 patients with HCC receiving PD-1 blockade, all 5 responders demonstrated PD-L1+ CTCs at baseline, compared with only 1 of 5 nonresponders, all of whom progressed within 4 months of starting treatment. Conclusion: We report a CTC assay for the phenotypic profiling of HCC CTCs expressing PD-L1. PD-L1+ CTCs are predominantly found in advanced-stage HCC, and independently prognosticate OS after controlling for Model for End-Stage Liver Disease, alpha-fetoprotein, and tumor stage. In patients with HCC receiving anti-PD-1 therapy, there was a strong association with the presence of PD-L1+ CTCs and favorable treatment response. Prospective validation in a larger cohort will better define the utility of PD-L1+ CTCs as a prognostic and predictive biomarker in HCC.
AB - Hepatocellular carcinoma (HCC) is a leading cause of mortality. Checkpoint inhibitors of programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1) have shown great efficacy, but lack biomarkers that predict response. Circulating tumor cells (CTCs) have promise as a liquid-biopsy biomarker; however, data on HCC CTCs expressing PD-L1 have not been reported. We sought to detect PD-L1-expressing HCC-CTCs and investigated their role as a prognostic and predictive biomarker. Using an antibody-based platform, CTCs were enumerated/phenotyped from a prospective cohort of 87 patients with HCC (49 early-stage, 22 locally advanced, and 16 metastatic), 7 patients with cirrhosis, and 8 healthy controls. Immunocytochemistry identified total HCC CTCs (4′,6-diamidino-2-phenylindole–positive [DAPI+]/cytokeratin-positive [CK+]/clusters of differentiation 45–negative [CD45−]) and a subpopulation expressing PD-L1 (DAPI+/CK+/PD-L1+/CD45−). PD-L1+ CTCs were identified in 4 of 49 (8.2%) early-stage patients, but 12 of 22 (54.5%) locally advanced and 15 of 16 (93.8%) metastatic patients, accurately discriminating early from locally advanced/metastatic HCC (sensitivity = 71.1%, specificity = 91.8%, area under the receiver operating characteristic curve = 0.807; P < 0.001). Compared to patients without PD-L1+ CTCs, patients with PD-L1+ CTCs had significantly inferior overall survival (OS) (median OS = 14.0 months vs. not reached, hazard ratio [HR] = 4.0, P = 0.001). PD-L1+ CTCs remained an independent predictor of OS (HR = 3.22, P = 0.010) even after controlling for Model for End-Stage Liver Disease score (HR = 1.14, P < 0.001), alpha-fetoprotein (HR = 1.55, P < 0.001), and overall stage/tumor burden (beyond University of California, San Francisco, HR = 7.19, P < 0.001). In the subset of 10 patients with HCC receiving PD-1 blockade, all 5 responders demonstrated PD-L1+ CTCs at baseline, compared with only 1 of 5 nonresponders, all of whom progressed within 4 months of starting treatment. Conclusion: We report a CTC assay for the phenotypic profiling of HCC CTCs expressing PD-L1. PD-L1+ CTCs are predominantly found in advanced-stage HCC, and independently prognosticate OS after controlling for Model for End-Stage Liver Disease, alpha-fetoprotein, and tumor stage. In patients with HCC receiving anti-PD-1 therapy, there was a strong association with the presence of PD-L1+ CTCs and favorable treatment response. Prospective validation in a larger cohort will better define the utility of PD-L1+ CTCs as a prognostic and predictive biomarker in HCC.
UR - http://www.scopus.com/inward/record.url?scp=85094156762&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094156762&partnerID=8YFLogxK
U2 - 10.1002/hep4.1577
DO - 10.1002/hep4.1577
M3 - Article
AN - SCOPUS:85094156762
SN - 2471-254X
VL - 4
SP - 1527
EP - 1540
JO - Hepatology Communications
JF - Hepatology Communications
IS - 10
ER -