TY - JOUR
T1 - Myocardial oxygen consumption during histidine-tryptophan-ketoglutarate cardioplegia in young human hearts
AU - Angeli, Emanuela
AU - Martens, Sabrina
AU - Careddu, Lucio
AU - Petridis, Francesco D.
AU - Quarti, Andrea G.
AU - Ciuca, Cristina
AU - Balducci, Anna
AU - Fabozzo, Assunta
AU - Ragni, Luca
AU - Donti, Andrea
AU - Gargiulo, Gaetano D.
N1 - Publisher Copyright:
© 2021 The Author(s).
PY - 2021/2/1
Y1 - 2021/2/1
N2 - Objectives: Energy demand and supply need to be balanced to preserve myocardial function during paediatric cardiac surgery. After a latent aerobic period, cardiac cells try to maintain energy production by anaerobic metabolism and by extracting oxygen from the given cardioplegic solution. Myocardial oxygen consumption (MVO2) changes gradually during the administration of cardioplegia. Methods: MVO2 was measured during cardioplegic perfusion in patients younger than 6 months of age (group N: neonates; group I: infants), with a body weight less than 10 kg. Histidine-tryptophan-ketoglutarate crystalloid solution was used for myocardial protection and was administered during a 5-min interval. To measure pO2 values during cardioplegic arrest, a sample of the cardioplegic fluid was taken from the inflow line before infusion. Three fluid samples were taken from the coronary venous effluent 1, 3 and 5 min after the onset of cardioplegia administration. MVO2 was calculated using the Fick principle. Results: The mean age of group N was 0.2 ± 0.09 versus 4.5 ± 1.1 months in group I. The mean weight was 3.1 ± 0.2 versus 5.7 ± 1.6 kg, respectively. MVO2 decreased similarly in both groups (min 1: 0.16 ± 0.07 vs 0.36 ± 0.1 ml/min; min 3: 0.08 ± 0.04 vs 0.17 ± 0.09 ml/min; min 5: 0.05 ± 0.04 vs 0.07 ± 0.05 ml/min). Conclusions: We studied MVO2 alterations after aortic cross-clamping and during delivery of cardioplegia in neonates and infants undergoing cardiac surgery. Extended cardioplegic perfusion significantly reduces energy turnover in hearts because the balance procedures are both volume- and above all time-dependent. A reduction in MVO2 indicates the necessity of a prolonged cardioplegic perfusion time to achieve optimized myocardial protection.
AB - Objectives: Energy demand and supply need to be balanced to preserve myocardial function during paediatric cardiac surgery. After a latent aerobic period, cardiac cells try to maintain energy production by anaerobic metabolism and by extracting oxygen from the given cardioplegic solution. Myocardial oxygen consumption (MVO2) changes gradually during the administration of cardioplegia. Methods: MVO2 was measured during cardioplegic perfusion in patients younger than 6 months of age (group N: neonates; group I: infants), with a body weight less than 10 kg. Histidine-tryptophan-ketoglutarate crystalloid solution was used for myocardial protection and was administered during a 5-min interval. To measure pO2 values during cardioplegic arrest, a sample of the cardioplegic fluid was taken from the inflow line before infusion. Three fluid samples were taken from the coronary venous effluent 1, 3 and 5 min after the onset of cardioplegia administration. MVO2 was calculated using the Fick principle. Results: The mean age of group N was 0.2 ± 0.09 versus 4.5 ± 1.1 months in group I. The mean weight was 3.1 ± 0.2 versus 5.7 ± 1.6 kg, respectively. MVO2 decreased similarly in both groups (min 1: 0.16 ± 0.07 vs 0.36 ± 0.1 ml/min; min 3: 0.08 ± 0.04 vs 0.17 ± 0.09 ml/min; min 5: 0.05 ± 0.04 vs 0.07 ± 0.05 ml/min). Conclusions: We studied MVO2 alterations after aortic cross-clamping and during delivery of cardioplegia in neonates and infants undergoing cardiac surgery. Extended cardioplegic perfusion significantly reduces energy turnover in hearts because the balance procedures are both volume- and above all time-dependent. A reduction in MVO2 indicates the necessity of a prolonged cardioplegic perfusion time to achieve optimized myocardial protection.
KW - Crystalloid cardioplegia
KW - Immature myocardium
KW - Myocardial protection
UR - http://www.scopus.com/inward/record.url?scp=85100358906&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100358906&partnerID=8YFLogxK
U2 - 10.1093/icvts/ivaa262
DO - 10.1093/icvts/ivaa262
M3 - Article
C2 - 33398332
AN - SCOPUS:85100358906
SN - 1569-9293
VL - 32
SP - 319
EP - 324
JO - Interactive Cardiovascular and Thoracic Surgery
JF - Interactive Cardiovascular and Thoracic Surgery
IS - 2
ER -