Abstract
BACKGROUND: Metastasis is the main cause of death for lung cancer patients. The ex vivo 4D acellular lung model has been shown to mimic this metastatic process. However, the main concern is the model's lack of cellular components of the tumor's microenvironment. In this study, we aim to determine if the intact lung microenvironment will still allow lung cancer metastasis to form.
METHODS: We harvested a heart-lung block from a rat and placed it in a bioreactor after cannulating the pulmonary artery, trachea and tying the right main bronchus for 10-15 days without any tumor cells as a control group or with NSCLC (A549, H1299 or H460), SCLC (H69, H446 or SHP77) or breast cancer cell lines (MCF7 or MDAMB231) through the trachea. We performed lobectomy, H&E staining and IHC for human mitochondria to determine the primary tumor's growth and formation of metastatic lesions. In addition, we isolated circulating tumor cells (CTC) from the model seeded with GFP tagged cells.
RESULTS: In the control group, no gross tumor nodules were found, H&E staining showed hyperplastic cells and IHC showed no staining for human mitochondria. All of the models seeded with cancer cell lines formed gross primary tumor nodules that had microscopic characteristics of human cancer cells on H&E staining with IHC showing staining for human mitochondria. CTC were isolated for those cells labeled with GFP and they were viable in culture. Finally, all cell lines formed metastatic lesions with cells stained for human mitochondria.
CONCLUSION: The cellular ex vivo 4D model shows that human cancer cells can form a primary tumor, CTC and metastatic lesions in an intact cellular environment. This study suggests that the natural matrix scaffold is the only necessary component to drive metastatic progression and that cellular components play a role in modulating tumor progression.
Original language | English (US) |
---|---|
Article number | 441 |
Pages (from-to) | 441 |
Journal | BMC Cancer |
Volume | 18 |
Issue number | 1 |
DOIs | |
State | Published - Apr 18 2018 |
Keywords
- Journal Article
- Lung Cancer
- Breast cancer
- 4D cellular model
ASJC Scopus subject areas
- Genetics
- Oncology
- Cancer Research