Abstract
Exon shuffling is thought to be an important mechanism for evolution of new genes. Here we show that the mouse neurological mutation flailer (flr) expresses a novel gene that combines the promoter and first two exons of guanine nucleotide binding protein beta 5 (Gnb5) with the C-terminal exons of the closely linked Myosin 5A (MyoVA) gene (Myo5a). The flailer protein, which is expressed predominantly in brain, contains the N-terminal 83 amino acids of Gnb5 fused in-frame with the C-terminal 711 amino acids of MyoVA, including the globular tail domain that binds organelles for intracellular transport. Biochemical and genetic studies indicate that the flailer protein competes with wild-type MyoVA in vivo, preventing the localization of smooth endoplasmic reticulum vesicles in the dendritic spines of cerebellar Purkinje cells. The flailer protein thus has a dominant-negative mechanism of action with a recessive mode of inheritance due to the dependence of competitive binding on the ratio between mutant and wild-type proteins. The chromosomal arrangement of Myo5a upstream of Gnb5 is consistent with non-homologous recombination as the mutational mechanism. To our knowledge, flailer is the first example of a mammalian mutation caused by germ line exon shuffling between unrelated genes.
Original language | English (US) |
---|---|
Pages (from-to) | 821-828 |
Number of pages | 8 |
Journal | Human Molecular Genetics |
Volume | 9 |
Issue number | 5 |
DOIs | |
State | Published - Mar 22 2000 |
ASJC Scopus subject areas
- Molecular Biology
- Genetics
- Genetics(clinical)