Uncoupling protein-2 mediates DPP-4 Inhibitor-induced restoration of endothelial function in hypertension through reducing oxidative stress

Limei Liu, Jian Liu, Xiao Yu Tian, Wing Tak Wong, Chi Wai Lau, Aimin Xu, Gang Xu, Chi Fai Ng, Xiaoqiang Yao, Yuansheng Gao, Yu Huang

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

Aims: Although uncoupling protein 2 (UCP2) negatively regulates intracellular reactive oxygen species (ROS) production and protects vascular function, its participation in vascular benefits of drugs used to treat cardiometabolic diseases is largely unknown. This study investigated whether UCP2 and associated oxidative stress reduction contribute to the improvement of endothelial function by a dipeptidyl peptidase-4 inhibitor, sitagliptin, in hypertension. Results: Pharmacological inhibition of cyclooxygenase-2 (COX-2) but not COX-1 prevented endothelial dysfunction, and ROS scavengers reduced COX-2 mRNA and protein expression in spontaneously hypertensive rats (SHR) renal arteries. Angiotensin II (Ang II) evoked endothelium-dependent contractions (EDCs) in C57BL/6 and UCP2 knockout (UCP2KO) mouse aortae. Chronic sitagliptin administration attenuated EDCs in SHR arteries and Ang II-infused C57BL/6 mouse aortae and eliminated ROS overproduction in SHR arteries, which were reversed by glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin 9-39, AMP-activated protein kinase (AMPK)α inhibitor compound C, and UCP2 inhibitor genipin. By contrast, sitagliptin unaffected EDCs in Ang II-infused UCP2KO mice. Sitagliptin increased AMPKα phosphorylation, upregulated UCP2, and downregulated COX-2 expression in arteries from SHR and Ang II-infused C57BL/6 mice. Importantly, exendin 9-39, compound C, and genipin reversed the inhibitory effect of GLP-1R agonist exendin-4 on Ang II-stimulated mitochondrial ROS rises in SHR endothelial cells. Moreover, exendin-4 improved the endothelial function of renal arteries from SHR and hypertensive patients. Innovation: We elucidate for the first time that UCP2 serves as an important signal molecule in endothelial protection conferred by GLP-1-related agents. UCP2 could be a useful target in treating hypertension-related vascular events. Conclusions: UCP2 inhibits oxidative stress and downregulates COX-2 expression through GLP-1/GLP-1R/AMPKα cascade. Antioxid. Redox Signal. 21, 1571-1581.

Original languageEnglish (US)
Pages (from-to)1571-1581
Number of pages11
JournalAntioxidants and Redox Signaling
Volume21
Issue number11
DOIs
StatePublished - Oct 10 2014

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Uncoupling protein-2 mediates DPP-4 Inhibitor-induced restoration of endothelial function in hypertension through reducing oxidative stress'. Together they form a unique fingerprint.

Cite this