TY - JOUR
T1 - A Commentary on TDP-43 and DNA Damage Response in Amyotrophic Lateral Sclerosis
AU - Mitra, Joy
AU - Hegde, Muralidhar
N1 - © The Author(s) 2019.
PY - 2019
Y1 - 2019
N2 - Amyotrophic lateral sclerosis (ALS) is a devastating, motor neuron degenerative disease without any cure. About 95% of the ALS patients feature abnormalities in the RNA/DNA-binding protein, TDP-43, involving its nucleo-cytoplasmic mislocalization in spinal motor neurons. How TDP-43 pathology triggers neuronal apoptosis remains unclear. In a recent study, we reported for the first time that TDP-43 participates in the DNA damage response (DDR) in neurons, and its nuclear clearance in spinal motor neurons caused DNA double-strand break (DSB) repair defects in ALS. We documented that TDP-43 was a key component of the non-homologous end joining (NHEJ) pathway of DSB repair, which is likely the major pathway for repair of DSBs in post-mitotic neurons. We have also uncovered molecular insights into the role of TDP-43 in DSB repair and showed that TDP-43 acts as a scaffold in recruiting the XRCC4/DNA Ligase 4 complex at DSB damage sites and thus regulates a critical rate-limiting function in DSB repair. Significant DSB accumulation in the genomes of TDP-43-depleted, human neural stem cell-derived motor neurons as well as in ALS patient spinal cords with TDP-43 pathology, strongly supported a TDP-43 involvement in genome maintenance and toxicity-induced genome repair defects in ALS. In this commentary, we highlight our findings that have uncovered a link between TDP-43 pathology and impaired DNA repair and suggest potential possibilities for DNA repair-targeted therapies for TDP-43-ALS.
AB - Amyotrophic lateral sclerosis (ALS) is a devastating, motor neuron degenerative disease without any cure. About 95% of the ALS patients feature abnormalities in the RNA/DNA-binding protein, TDP-43, involving its nucleo-cytoplasmic mislocalization in spinal motor neurons. How TDP-43 pathology triggers neuronal apoptosis remains unclear. In a recent study, we reported for the first time that TDP-43 participates in the DNA damage response (DDR) in neurons, and its nuclear clearance in spinal motor neurons caused DNA double-strand break (DSB) repair defects in ALS. We documented that TDP-43 was a key component of the non-homologous end joining (NHEJ) pathway of DSB repair, which is likely the major pathway for repair of DSBs in post-mitotic neurons. We have also uncovered molecular insights into the role of TDP-43 in DSB repair and showed that TDP-43 acts as a scaffold in recruiting the XRCC4/DNA Ligase 4 complex at DSB damage sites and thus regulates a critical rate-limiting function in DSB repair. Significant DSB accumulation in the genomes of TDP-43-depleted, human neural stem cell-derived motor neurons as well as in ALS patient spinal cords with TDP-43 pathology, strongly supported a TDP-43 involvement in genome maintenance and toxicity-induced genome repair defects in ALS. In this commentary, we highlight our findings that have uncovered a link between TDP-43 pathology and impaired DNA repair and suggest potential possibilities for DNA repair-targeted therapies for TDP-43-ALS.
KW - Amyotrophic lateral sclerosis
KW - DNA damage response
KW - DNA double-strand break repair
KW - TDP-43
KW - neurodegeneration
KW - non-homologous end joining
UR - http://www.scopus.com/inward/record.url?scp=85073622644&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073622644&partnerID=8YFLogxK
U2 - 10.1177/1179069519880166
DO - 10.1177/1179069519880166
M3 - Article
C2 - 31656396
AN - SCOPUS:85073622644
SN - 1179-0695
VL - 13
JO - Journal of Experimental Neuroscience
JF - Journal of Experimental Neuroscience
ER -