TY - JOUR
T1 - A novel conditional Akt 'survival switch' reversibly protects cells from apoptosis
AU - Li, B.
AU - Desai, S. A.
AU - MacCorke-Hall, Rebecca
AU - Fan, L.
AU - Spencer, D. M.
PY - 2002
Y1 - 2002
N2 - The anti-apoptotic Akt kinase is commonly activated by survival factors following plasma membrane relocalization attributable to the interaction of its pleckstrin homology (PH) domain with phosphatidylinositol 3-kinase (PI3K)-generated PI3,4-P2 and PI3,4,5-P3. Once activated, Akt can prevent or delay apoptosis by phosphorylation-dependent inhibition or activation of multiple signaling molecules involved in apoptosis, such as BAD, caspase-9, GSK3, and NF-κB and forkhead family transcription factors. Here, we describe and characterize a novel, conditional Akt controlled by chemically induced dimerization (CID). In this approach, the Akt PH domain has been replaced with the rapamycin (and FK506)-binding domain, FKBP12, to make F3-ΔPH.Akt. To effect membrane recruitment, a myristoylated rapamycin-binding domain from FRAP/mTOR, called M-FRB, binds to lipid permeable rapamycin (and non-bioactive synthetic 'rapalogs'), leading to reversible heterodimerization of M-FRB with FKBP-ΔPH.Akt. Like endogenous c-Akt, we show that the kinase activity of membrane-localized F3-ΔPH.Akt correlates strongly with phosphorylation at T308 and S473; however, unlike c-Akt, phosphorylation and activation of inducible Akt (iAkt) is largely PI3K independent. CID-mediated activation of iAkt results in phosphorylation of GSK3, and contributes to NF-κB activation in vivo in a dose-sensitive manner. Finally, in Jurkat T cells stably expressing iAkt, CID-induced Akt activation rescued cells from apoptosis triggered by multiple apoptotic stimuli, including staurosporine, anti-Fas antibodies, PI3K inhibitors and the DNA damaging agent, etoposide. This novel inducible Akt should be useful for identifying new Akt substrates and for reversibly protecting tissue from apoptosis due to ischemic injury or immunological attack.
AB - The anti-apoptotic Akt kinase is commonly activated by survival factors following plasma membrane relocalization attributable to the interaction of its pleckstrin homology (PH) domain with phosphatidylinositol 3-kinase (PI3K)-generated PI3,4-P2 and PI3,4,5-P3. Once activated, Akt can prevent or delay apoptosis by phosphorylation-dependent inhibition or activation of multiple signaling molecules involved in apoptosis, such as BAD, caspase-9, GSK3, and NF-κB and forkhead family transcription factors. Here, we describe and characterize a novel, conditional Akt controlled by chemically induced dimerization (CID). In this approach, the Akt PH domain has been replaced with the rapamycin (and FK506)-binding domain, FKBP12, to make F3-ΔPH.Akt. To effect membrane recruitment, a myristoylated rapamycin-binding domain from FRAP/mTOR, called M-FRB, binds to lipid permeable rapamycin (and non-bioactive synthetic 'rapalogs'), leading to reversible heterodimerization of M-FRB with FKBP-ΔPH.Akt. Like endogenous c-Akt, we show that the kinase activity of membrane-localized F3-ΔPH.Akt correlates strongly with phosphorylation at T308 and S473; however, unlike c-Akt, phosphorylation and activation of inducible Akt (iAkt) is largely PI3K independent. CID-mediated activation of iAkt results in phosphorylation of GSK3, and contributes to NF-κB activation in vivo in a dose-sensitive manner. Finally, in Jurkat T cells stably expressing iAkt, CID-induced Akt activation rescued cells from apoptosis triggered by multiple apoptotic stimuli, including staurosporine, anti-Fas antibodies, PI3K inhibitors and the DNA damaging agent, etoposide. This novel inducible Akt should be useful for identifying new Akt substrates and for reversibly protecting tissue from apoptosis due to ischemic injury or immunological attack.
KW - Akt
KW - Apoptosis
KW - CID
KW - Conditional signaling protein
KW - Inducible Akt
KW - Survival switch
UR - http://www.scopus.com/inward/record.url?scp=0036199050&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036199050&partnerID=8YFLogxK
U2 - 10.1038/sj/gt/3301641
DO - 10.1038/sj/gt/3301641
M3 - Article
C2 - 11896462
SN - 0969-7128
VL - 9
SP - 233
EP - 244
JO - Gene Therapy
JF - Gene Therapy
IS - 4
ER -