Advances in NURR1-Regulated Neuroinflammation Associated with Parkinson’s Disease

Murad Al-Nusaif, Yushan Lin, Tianbai Li, Cheng Cheng, Weidong Le

Research output: Contribution to journalReview articlepeer-review

6 Scopus citations

Abstract

Neuroinflammation plays a crucial role in the progression of neurodegenerative disorders, particularly Parkinson’s disease (PD). Glial cell activation and subsequent adaptive immune involvement are neuroinflammatory features in familial and idiopathic PD, resulting in the death of dopaminergic neuron cells. An oxidative stress response, inflammatory mediator production, and immune cell recruitment and activation are all hallmarks of this activation, leading to chronic neuroinflammation and progressive neurodegeneration. Several studies in PD patients’ cerebrospinal fluid and peripheral blood revealed alterations in inflammatory markers and immune cell populations that may lead to or exacerbate neuroinflammation and perpetuate the neurodegenerative process. Most of the genes causing PD are also expressed in astrocytes and microglia, converting their neuroprotective role into a pathogenic one and contributing to disease onset and progression. Nuclear receptor-related transcription factor 1 (NURR1) regulates gene expression linked to dopaminergic neuron genesis and functional maintenance. In addition to playing a key role in developing and maintaining neurotransmitter phenotypes in dopaminergic neurons, NURR1 agonists have been shown to reverse behavioral and histological abnormalities in animal PD models. NURR1 protects dopaminergic neurons from inflammation-induced degeneration, specifically attenuating neuronal death by suppressing the expression of inflammatory genes in microglia and astrocytes. This narrative review highlights the inflammatory changes in PD and the advances in NURR1-regulated neuroinflammation associated with PD. Further, we present new evidence that targeting this inflammation with a variety of potential NURR1 target therapy medications can effectively slow the progression of chronic neuroinflammation-induced PD.

Original languageEnglish (US)
Article number16184
JournalInternational journal of molecular sciences
Volume23
Issue number24
DOIs
StatePublished - Dec 2022

Keywords

  • Parkinson’s disease
  • astrocytes
  • microglia
  • neuroinflammation
  • nuclear receptor-related transcription factor 1

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Advances in NURR1-Regulated Neuroinflammation Associated with Parkinson’s Disease'. Together they form a unique fingerprint.

Cite this