Amyotrophic lateral sclerosis-associated TDP-43 mutation Q331K prevents nuclear translocation of XRCC4-DNA ligase 4 complex and is linked to genome damage-mediated neuronal apoptosis

Erika N. Guerrero, Joy Mitra, Haibo Wang, Suganya Rangaswamy, Pavana M. Hegde, Priyadarshini Basu, K. S. Rao, Muralidhar Hegde

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Dominant mutations in the RNA/DNA-binding protein TDP-43 have been linked to amyotrophic lateral sclerosis (ALS). Here, we screened genomic DNA extracted from spinal cord specimens of sporadic ALS patients for mutations in the TARDBP gene and identified a patient specimen with previously reported Q331K mutation. The patient spinal cord tissue with Q331K mutation showed accumulation of higher levels of DNA strand breaks and the DNA double-strand break (DSB) marker γH2AX, compared to age-matched controls, suggesting a role of the Q331K mutation in genome-damage accumulation. Using conditional SH-SY5Y lines ectopically expressing wild-type (WT) or Q331K-mutant TDP-43, we confirmed the increased cytosolic sequestration of the poly-ubiquitinated and aggregated form of mutant TDP-43, which correlated with increased genomic DNA strand breaks, activation of the DNA damage response factors phospho-ataxia-telangiectasia mutated (ATM), phospho-53BP1, γH2AX and neuronal apoptosis. We recently reported the involvement of WT TDP-43 in non-homologous end joining (NHEJ)-mediated DSB repair, where it acts as a scaffold for the recruitment of XRCC4-DNA ligase 4 complex. Here, the mutant TDP-43, due to its reduced interaction and enhanced cytosolic mislocalization, prevented the nuclear translocation of XRCC4-DNA ligase 4. Consistently, the mutant cells showed significantly reduced DNA strand break sealing activity and were sensitized to DNA-damaging drugs. In addition, the mutant cells showed elevated levels of reactive oxygen species, suggesting both dominant negative and loss-of-function effects of the mutation. Together, our study uncovered an association of sporadic Q331K mutation with persistent genome damage accumulation due to both damage induction and repair defects.

Original languageEnglish (US)
Pages (from-to)2459-2476
Number of pages18
JournalHuman Molecular Genetics
Volume28
Issue number5
DOIs
StatePublished - Aug 1 2019

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Genetics(clinical)

Fingerprint

Dive into the research topics of 'Amyotrophic lateral sclerosis-associated TDP-43 mutation Q331K prevents nuclear translocation of XRCC4-DNA ligase 4 complex and is linked to genome damage-mediated neuronal apoptosis'. Together they form a unique fingerprint.

Cite this