Automatic segmentation and centroid detection of skin sensors for lung interventions

Kongkuo Lu, Sheng Xu, Zhong Xue, Stephen T. Wong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Electromagnetic (EM) tracking has been recognized as a valuable tool for locating the interventional devices in procedures such as lung and liver biopsy or ablation. The advantage of this technology is its real-time connection to the 3D volumetric roadmap, i.e. CT, of a patient's anatomy while the intervention is performed. EM-based guidance requires tracking of the tip of the interventional device, transforming the location of the device onto pre-operative CT images, and superimposing the device in the 3D images to assist physicians to complete the procedure more effectively. A key requirement of this data integration is to find automatically the mapping between EM and CT coordinate systems. Thus, skin fiducial sensors are attached to patients before acquiring the pre-operative CTs. Then, those sensors can be recognized in both CT and EM coordinate systems and used calculate the transformation matrix. In this paper, to enable the EM-based navigation workflow and reduce procedural preparation time, an automatic fiducial detection method is proposed to obtain the centroids of the sensors from the pre-operative CT. The approach has been applied to 13 rabbit datasets derived from an animal study and eight human images from an observation study. The numerical results show that it is a reliable and efficient method for use in EM-guided application.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2012
Subtitle of host publicationImage-Guided Procedures, Robotic Interventions, and Modeling
Volume8316
DOIs
StatePublished - May 1 2012
EventMedical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling - San Diego, CA, United States
Duration: Feb 5 2012Feb 7 2012

Other

OtherMedical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling
Country/TerritoryUnited States
CitySan Diego, CA
Period2/5/122/7/12

Keywords

  • 3D CT imaging
  • CAD
  • EM tracking
  • lung cancer
  • percutaneous intervention
  • segmentation

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Automatic segmentation and centroid detection of skin sensors for lung interventions'. Together they form a unique fingerprint.

Cite this