Comparison of functional network integrity in TBI and orthopedic controlpatientsusing graph-theoretical analysis

Christof Karmonik, Jessica Clark, Steve H. Fung, Robert G. Grossman, Walter High, Yang Jiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The integrity of functional brain networks inpatients (n=12) diagnosed with traumatic brain injury (TBI) was compared to age-matched subjects (n=12) with orthopedic injury (OI) during a working memory task. A graph-theoretical analysis algorithm was developed and integrated into the AFNI software. Functional networks with correlations between time courses as edge-weights were automatically created and their integrity was quantified by determining the statistical significance of the following network parameters: diameter, density, clustering coefficient, average path length, two largest eigenvalues, spectral density, and minimum eccentricity. Network graphs using a spring-embedded layout (Cytoscape) and a 3D layout integrated into the anatomical space (Paraview) were created. Functional images were composed by color-coding the degree of each voxel (network node) and transformed into Talairach space. Using the AFNI Talairach atlas, degrees of distinct brain regions were quantified. Reduced averaged BOLD responses were found for the TBI group with a higher network integrity potentially as a compensatory mechanism. Regions of high functional connectivity varied in between groups with largest differences in the cerebellum, the temporal lobes and deep brain structures including the lentiform nucleus, caudate and thalamus.

Original languageEnglish (US)
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages1366-1369
Number of pages4
DOIs
StatePublished - 2013
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: Jul 3 2013Jul 7 2013

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period7/3/137/7/13

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Comparison of functional network integrity in TBI and orthopedic controlpatientsusing graph-theoretical analysis'. Together they form a unique fingerprint.

Cite this