Abstract
Group A Streptococcus secretes cysteine proteases named Mac-1 and Mac-2 that mediate host immune evasion by targeting both IgG and Fc receptors. Here, we report the crystal structures of Mac-1 and its catalytically inactive C94A mutant in two different crystal forms. Despite the lack of sequence homology, Mac-1 adopts the canonical papain fold. Alanine mutations at the active site confirmed the critical residues involved in a papain-like catalytic mechanism. Mac-1 forms a symmetric dimer in both crystal forms and displays the unique dimer interface among papain superfamily members. Mutations at the dimer interface resulted in a significant reduction in IgG binding and catalysis, suggesting that the dimer contributes to both IgG specificity and enzyme cooperativity. A tunnel observed at the dimer interface constitutes a target for designing potential Mac-1-specific antimicrobial agents. The structures also offer insight into the functional difference between Mac-1 and Mac-2.
Original language | English (US) |
---|---|
Pages (from-to) | 225-235 |
Number of pages | 11 |
Journal | Structure |
Volume | 14 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2006 |
ASJC Scopus subject areas
- Structural Biology
- Molecular Biology