Curriculum learning for multi-task classification of visual attributes

Nikolaos Sarafianos, Theodore Giannakopoulos, Christophoros Nikou, Ioannis A. Kakadiaris

Research output: Chapter in Book/Report/Conference proceedingConference contribution

41 Scopus citations

Abstract

Visual attributes, from simple objects (e.g., backpacks, hats) to soft-biometrics (e.g., gender, height, clothing) have proven to be a powerful representational approach for many applications such as image description and human identification. In this paper, we introduce a novel method to combine the advantages of both multi-task and curriculum learning in a visual attribute classification framework. Individual tasks are grouped based on their correlation so that two groups of strongly and weakly correlated tasks are formed. The two groups of tasks are learned in a curriculum learning setup by transferring the acquired knowledge from the strongly to the weakly correlated. The learning process within each group though, is performed in a multitask classification setup. The proposed method learns better and converges faster than learning all the tasks in a typical multi-task learning paradigm. We demonstrate the effectiveness of our approach on the publicly available, SoBiR, VIPeR and PETA datasets and report state-of-the-art results across the board.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2608-2615
Number of pages8
ISBN (Electronic)9781538610343
DOIs
StatePublished - Jul 1 2017
Event16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017 - Venice, Italy
Duration: Oct 22 2017Oct 29 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Volume2018-January

Conference

Conference16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Country/TerritoryItaly
CityVenice
Period10/22/1710/29/17

ASJC Scopus subject areas

  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Curriculum learning for multi-task classification of visual attributes'. Together they form a unique fingerprint.

Cite this