Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells

Abhimanyu Sabnis, Maham Rahimi, Christopher Chapman, Kytai T. Nguyen

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

We have been investigating thermoresponsive hydrogel nanoparticle composite networks to develop photopolymerized hydrogels to deliver drugs for prevention of restenosis after angioplasty. These composite systems can form a gel under physiological conditions and release drugs in response to temperature changes. Our novel system, consisting of poly(N-isopropylacrylamide) thermoresponsive nanoparticles, photo cross-linker poly(ethylene glycol) diacrylate, and UV photoinitiator, 2-hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone-1- one (Irgacure 2959), would be photopolymerized in situ in the presence of UV light. The focus of this study was to evaluate the effects of photoinitiator and UV exposure on human aortic smooth muscle cells (HASMCs). We found that the exposure to UV light did not significantly affect the cellular survival within doses required for photopolymerization. The photoinitiator was cytocompatible at low concentrations (≤0.015% w/v); however, cytotoxicity increased with increasing photoinitiator concentrations. In addition, free radicals formed in the presence of a photoinitiator and UV light caused significant levels of cell death. An antioxidant (free radical scavenger), ascorbic acid, added to the cell media, significantly improved relative cell survival but increased the hydrogel gelation time. Finally, HASMC survival when exposed to all potential cytotoxic components was also evaluated by exposing HASMCs to media incubated with our composite hydrogels. In summary, our studies show that the photoinitiator and free radicals are responsible for the cytotoxicity on HASMCs, and the addition of antioxidants can significantly reduce these harmful effects.

Original languageEnglish (US)
Pages (from-to)52-59
Number of pages8
JournalJournal of Biomedical Materials Research - Part A
Volume91
Issue number1
DOIs
StatePublished - 2009

Keywords

  • Cytotoxicity
  • Human aortic smooth muscle cells
  • Hydrogels
  • Irgacure 2959
  • Photopolymerization
  • Thermoresponsive nanoparticles
  • UV

ASJC Scopus subject areas

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells'. Together they form a unique fingerprint.

Cite this