Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: a phase 1/2a dose-escalation study

Peter A. Campochiaro, Robert Avery, David M. Brown, Jeffrey S. Heier, Allen C. Ho, Stephen M. Huddleston, Glenn J. Jaffe, Arshad M. Khanani, Stephen Pakola, Dante J. Pieramici, Charles C. Wykoff, Sherri Van Everen

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Background: Frequent anti-vascular endothelial growth factor A (VEGF-A) injections reduce the risk of rapid and severe vision loss in patients with neovascular age-related macular degeneration (nAMD); however, due to undertreatment, many patients lose vision over time. New treatments that provide sustained suppression of VEGF-A are needed. RGX-314 (currently known as ABBV-RGX-314) is an adeno-associated virus serotype 8 vector that expresses an anti-VEGF-A antigen-binding fragment, which provides potential for continuous VEGF-A suppression after a single subretinal injection. We report results on the safety and efficacy of subretinal injection of RGX-314 in patients with nAMD. Methods: For this open-label, multiple-cohort, multicentre, phase 1/2a, dose-escalation study conducted at eight sites in the USA, we enrolled participants with nAMD aged 50–89 years who had previously been treated with anti-VEGF injections into five cohorts (with five different doses of RGX-314). To be eligible, participants had to have macular neovascularisation secondary to nAMD with subretinal or intraretinal fluid in the centre subfield, be pseudophakic (after cataract removal), and have a best-corrected visual acuity (BCVA) in the study eye between 20/63 and 20/400 for the first participant in each cohort and between 20/40 and 20/400 for others. Subretinal injection of RGX-314 was done without a pre-bleb by a wet-laboratory-trained vitreoretinal surgeon. Cohort 1 received 3 × 109 genome copies per eye, cohort 2 received 1 × 1010, and cohort 3 received 6 × 1010. Two additional dose cohorts (cohort 4: 1·6 × 1011; cohort 5: 2·5 × 1011) were added. Participants were seen 1 day and 1 week after administration of RGX-314, and then monthly for 2 years (up to week 106). The primary outcome was safety of RGX-314 delivered by subretinal injection up to week 26. This analysis includes all 42 patients enrolled in the study. This study is registered with ClinicalTrials.gov, NCT03066258. Findings: Between May 12, 2017, and May 21, 2019, we screened 110 patients for eligibility and enrolled 68. 42 participants demonstrated the required anatomic response to intravitreal ranibizumab and then received a single RGX-314 injection (dose range 3 × 109 to 2·5 × 1011 genome copies per eye) and were followed up for 2 years. There were 20 serious adverse events in 13 participants, of which one was possibly related to RGX-314: pigmentary changes in the macula with severe vision reduction 12 months after injection of RGX-314 at a dose of 2·5 × 1011 genome copies per eye. Asymptomatic pigmentary changes were seen in the inferior retinal periphery several months after subretinal injection of RGX-314 most commonly at doses of 6 × 1010 genome copies per eye or higher. There were no clinically determined immune responses or inflammation beyond that expected following routine vitrectomy. Doses of 6 × 1010 genome copies or higher resulted in sustained concentrations of RGX-314 protein in aqueous humour and stable or improved BCVA and central retinal thickness with few or no supplemental anti-VEGF-A injections in most participants. Interpretation: Subretinal delivery of RGX-314 was generally well tolerated with no clinically recognised immune responses. RGX-314 gene therapy provides a novel approach for sustained VEGF-A suppression in patients with nAMD that has potential to control exudation, maintain vision, and reduce treatment burden after a single administration. Results from this study informed the pivotal programme to evaluate RGX-314 in patients with nAMD. Funding: RegenxBio.

Original languageEnglish (US)
Pages (from-to)1563-1573
Number of pages11
JournalThe Lancet
Volume403
Issue number10436
DOIs
StatePublished - Apr 20 2024

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: a phase 1/2a dose-escalation study'. Together they form a unique fingerprint.

Cite this