Relative contributions of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF

Sreedhar R. Nallapareddy, Kavindra V. Singh, Jouko Sillanpää, Meng Zhao, Barbara E. Murray

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

Previous studies have demonstrated that the ebp operon and the ace gene of Enterococcus faecalis, encoding endocarditis- and biofilm-associated pili and an adhesin to collagen of E. faecalis, respectively, are both important in experimental urinary tract infections (UTI) and endocarditis. We have also shown that growth of E. faecalis in brain heart infusion (BHI) serum enhances Ebp pilus and Ace production and increases adherence to several host extracellular matrix proteins. Here, we report that deletion of ebpABC almost eliminated serum-elicited adherence to fibrinogen (P < 0.0001), resulted in moderate reduction in adherence to collagen (P < 0.05), and had no effect on fibronectin adherence relative to that of wild-type OG1RF. An OG1RFΔaceΔebpABC double mutant showed further reduced collagen adherence versus that of the OG1RFΔace or OG1RFΔebpABC mutants (P < 0.001). These results were corroborated by complementation and/or studies with native pilus-enriched surface extracts and a collagen-secreting 3T6 fibroblast cell line, as well as antibody inhibition. In the UTI model, both the OG1RFΔace and OG1RFΔaceΔebpABC mutants were found to be significantly attenuated compared to the wild type; however, no significant differences were observed between individual ace or ebp mutants and the OG1RFΔaceΔebpABC mutant. In summary, these data implicate the Ebp pili as having some role in collagen adherence, albeit less than that of Ace, and a very major role in fibrinogen adherence, which may explain in part the importance of these pili in experimental endocarditis. The OG1RFΔaceΔebpABC mutant was attenuated in the UTI model, although not significantly more so than the Δace or ΔebpABC mutants, suggesting involvement of other E. faecalis factors in urinary tract colonization or infection.

Original languageEnglish (US)
Pages (from-to)2901-2910
Number of pages10
JournalInfection and Immunity
Volume79
Issue number7
DOIs
StatePublished - Jul 2011

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Relative contributions of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF'. Together they form a unique fingerprint.

Cite this