Supercharging enables organized assembly of synthetic biomolecules

Anna J. Simon, Yi Zhou, Vyas Ramasubramani, Jens Glaser, Arti Pothukuchy, Jimmy Gollihar, Jillian C. Gerberich, Janelle C. Leggere, Barrett R. Morrow, Cheulhee Jung, Sharon C. Glotzer, David W. Taylor, Andrew D. Ellington

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Symmetrical protein oligomers are ubiquitous in biological systems and perform key structural and regulatory functions. However, there are few methods for constructing such oligomers. Here we have engineered completely synthetic, symmetrical oligomers by combining pairs of oppositely supercharged variants of a normally monomeric model protein through a strategy we term ‘supercharged protein assembly’ (SuPrA). We show that supercharged variants of green fluorescent protein can assemble into a variety of architectures including a well-defined symmetrical 16-mer structure that we solved using cryo-electron microscopy at 3.47 Å resolution. The 16-mer is composed of two stacked rings of octamers, in which the octamers contain supercharged proteins of alternating charges, and interactions within and between the rings are mediated by a variety of specific electrostatic contacts. The ready assembly of this structure suggests that combining oppositely supercharged pairs of protein variants may provide broad opportunities for generating novel architectures via otherwise unprogrammed interactions.

Original languageEnglish (US)
Pages (from-to)204-212
Number of pages9
JournalNature Chemistry
Volume11
Issue number3
DOIs
StatePublished - Mar 1 2019

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint

Dive into the research topics of 'Supercharging enables organized assembly of synthetic biomolecules'. Together they form a unique fingerprint.

Cite this