Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model

Yue Zhao, Song Chen, Peixiang Lan, Chenglin Wu, Yaling Dou, Xiang Xiao, Zhiqiang Zhang, Laurie Minze, Xiaoshun He, Wenhao Chen, Xian C Li

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

Macrophages infiltrating the allografts are heterogeneous, consisting of proinflammatory (M1 cells) as well as antiinflammatory and fibrogenic phenotypes (M2 cells); they affect transplantation outcomes via diverse mechanisms. Here we found that macrophage polarization into M1 and M2 subsets was critically dependent on tumor necrosis factor receptor-associated factor 6 (TRAF6) and mammalian target of rapamycin (mTOR), respectively. In a heart transplant model we showed that macrophage-specific deletion of TRAF6 (LysMCre Traf6 fl/fl ) or mTOR (LysMCre Mtorfl/fl ) did not affect acute allograft rejection. However, treatment of LysMCre Mtorfl/fl recipients with CTLA4-Ig induced long-term allograft survival (>100 days) without histological signs of chronic rejection, whereas the similarly treated LysMCre Traf6 fl/fl recipients developed severe transplant vasculopathy (chronic rejection). The presentation of chronic rejection in CTLA4-Ig-treated LysMCre Traf6 fl/fl mice was similar to that of CTLA4-Ig-treated wild-type B6 recipients. Mechanistically, we found that the graft-infiltrating macrophages in LysMCre Mtorfl/fl recipients expressed high levels of PD-L1, and that PD-L1 blockade readily induced rejection of otherwise survival grafts in the LysMCre Mtorfl/fl recipients. Our findings demonstrate that targeting mTOR-dependent M2 cells is critical for preventing chronic allograft rejection, and that graft survival under such conditions is dependent on the PD-1/PD-L1 coinhibitory pathway.

Original languageEnglish (US)
JournalAmerican Journal of Transplantation
DOIs
StateE-pub ahead of print - Oct 17 2017

Keywords

  • Journal Article

Fingerprint

Dive into the research topics of 'Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model'. Together they form a unique fingerprint.

Cite this